skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gardner, Rob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S (Ed.)
    The IRIS-HEP software institute, as a contributor to the broader HEP Python ecosystem, is developing scalable analysis infrastructure and software tools to address the upcoming HL-LHC computing challenges with new approaches and paradigms, driven by our vision of what HL-LHC analysis will require. The institute uses a “Grand Challenge” format, constructing a series of increasingly large, complex, and realistic exercises to show the vision of HL-LHC analysis. Recently, the focus has been demonstrating the IRIS-HEP analysis infrastructure at scale and evaluating technology readiness for production. As a part of the Analysis Grand Challenge activities, the institute executed a “200 Gbps Challenge”, aiming to show sustained data rates into the event processing of multiple analysis pipelines. The challenge integrated teams internal and external to the institute, including operations and facilities, analysis software tools, innovative data delivery and management services, and scalable analysis infrastructure. The challenge showcases the prototypes — including software, services, and facilities — built to process around 200 TB of data in both the CMS NanoAOD and ATLAS PHYSLITE data formats with test pipelines. The teams were able to sustain the 200 Gbps target across multiple pipelines. The pipelines focusing on event rate were able to process at over 30 MHz. These target rates are demanding; the activity revealed considerations for future testing at this scale and changes necessary for physicists to work at this scale in the future. The 200 Gbps Challenge has established a baseline on today’s facilities, setting the stage for the next exercise at twice the scale. 
    more » « less
    Free, publicly-accessible full text available October 7, 2026
  2. Data distribution for opportunistic users is challenging as they neither own the computing resources they are using or any nearby storage. Users are motivated to use opportunistic computing to expand their data processing capacity, but they require storage and fast networking to distribute data to that processing. Since it requires significant management overhead, it is rare for resource providers to allow opportunistic access to storage. Additionally, in order to use opportunistic storage at several distributed sites, users assume the responsibility to maintain their data. In this paper we present StashCache, a distributed caching federation that enables opportunistic users to utilize nearby opportunistic storage. StashCache is comprised of four components: data origins, redirectors, caches, and clients. StashCache has been deployed in the Open Science Grid for several years and has been used by many projects. Caches are deployed in geographically distributed locations across the U.S. and Europe. We will present the architecture of StashCache, as well as utilization information of the infrastructure. We will also present performance analysis comparing distributed HTTP Proxies vs StashCache. 
    more » « less